Pleijel’s Nodal Domain Theorem for Free Membranes

نویسنده

  • IOSIF POLTEROVICH
چکیده

We prove an analogue of Pleijel’s nodal domain theorem for piecewise analytic planar domains with Neumann boundary conditions. This confirms a conjecture made by Pleijel in 1956. The proof is a combination of Pleijel’s original approach and an estimate due to Toth and Zelditch for the number of boundary zeros of Neumann eigenfunctions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The uniqueness theorem for inverse nodal problems with a chemical potential

In this paper, an inverse nodal problem for a second-order differential equation having a chemical potential on a finite interval is investigated. First, we estimate the nodal points and nodal lengths of differential operator. Then, we show that the potential can be uniquely determined by a dense set of nodes of the eigenfunctions.

متن کامل

Nodal Decompositions of Graphs

A nodal domain of a function is a maximally connected subset of the domain for which the function does not change sign. Courant’s nodal domain theorem gives a bound on the number of nodal domains of eigenfunctions of elliptic operators. In particular, the kth eigenfunction contains no more than k nodal domains. We prove a generalization of Courant’s theorem to discrete graphs. Namely, we show t...

متن کامل

On the Generalization of the Courant Nodal Domain Theorem

In this paper we consider the analogue of the Courant nodal domain theorem for the nonlinear eigenvalue problem for the p-Laplacian. In particular we prove that if uln is an eigenfunction associated with the nth variational eigenvalue, ln, then uln has at most 2n−2 nodal domains. Also, if uln has n+k nodal domains, then there is another eigenfunction with at most n−k nodal domains. © 2002 Elsev...

متن کامل

Discrete Nodal Domain Theorems

We prove two discrete analogues of Courant’s Nodal Domain Theorem.

متن کامل

Nodal domain theorem for the graph p-Laplacian

In this work we consider the nonlinear graph p-Laplacian and the set of eigenvalues and associated eigenvectors of this operator defined by a variational principle. We prove a unifying nodal domain theorem for the graph p-Laplacian for any p ≥ 1. While for p > 1 the bounds on the number of weak and strong nodal domains are the same as for the linear graph Laplacian (p = 2), the behavior changes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008